0=4(3x^2-26x+42)

Simple and best practice solution for 0=4(3x^2-26x+42) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 0=4(3x^2-26x+42) equation:



0=4(3x^2-26x+42)
We move all terms to the left:
0-(4(3x^2-26x+42))=0
We add all the numbers together, and all the variables
-(4(3x^2-26x+42))=0
We calculate terms in parentheses: -(4(3x^2-26x+42)), so:
4(3x^2-26x+42)
We multiply parentheses
12x^2-104x+168
Back to the equation:
-(12x^2-104x+168)
We get rid of parentheses
-12x^2+104x-168=0
a = -12; b = 104; c = -168;
Δ = b2-4ac
Δ = 1042-4·(-12)·(-168)
Δ = 2752
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{2752}=\sqrt{64*43}=\sqrt{64}*\sqrt{43}=8\sqrt{43}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(104)-8\sqrt{43}}{2*-12}=\frac{-104-8\sqrt{43}}{-24} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(104)+8\sqrt{43}}{2*-12}=\frac{-104+8\sqrt{43}}{-24} $

See similar equations:

| 12v+13=v+24 | | 5x-3x+9-15x=123 | | (^3√25)=(1/125)^-x+3 | | 6y+-2=10 | | 2/3x-1/6=x+3/6 | | 15x-13+3x-5=180 | | 4x2+29x-24=0 | | 8v-6=v+22 | | 7x9+4x+22=90 | | 4x+4+5x=-41 | | 8/7=x/5 | | (x5+9x3–3x2+14x–21)/(x2+7)=x | | 17/7=9/u | | 33=19w | | 30=5(b=4) | | .70xN=222,100 | | 3x+11+8x+2=90 | | 2c-25=c-5 | | k1/5=3 | | 16x-18=6x+32 | | -25v-40=23-8v | | .70xX=222,100 | | 3/8=u/4 | | 3c+29=c+43= | | 7=2u-3 | | 3^(2x+1)=90 | | 3x+54=90 | | (7x-5)+(9x-7)=180 | | v/4=3/13 | | c=3c-76 | | (7x-4)^2=-9 | | 12=y/2+10 |

Equations solver categories